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Abstract-The self-consistent mechanics method has been widely used to estimate the macroscopic
elastic moduli of solids containing microvoids and inclusions. Another method based on the crack
energy release and potential energy balance has also been used to estimate the overall elastic moduli
of a microcracked solid. It is shown here that these two approaches are equivalent for microcracked
solids, thus one can take advantage ofboth methods to estimate the elastic moduli ofinclusion-crack­
matrix composites, Le. microcracked composite material. A solid containing spherical inclusions and
randomly distributed penny-shaped cracks is then studied. The effective elastic moduli of a solid
with spherical inclusions and parallel-distributed penny-shaped cracks are also studied. It is estab­
lished that the effects of inclusions and microcracks on overall moduli are approximately decoupled
for stiff inclusions, which are in most metal matrix composites. This conclusion is particularly useful
since one may then obtain the moduli ofcomposites by a simple two-step estimation. For compliant
inclusions, including the limiting case of voids, the decoupling does not hold.

1. INTRODUCTION

The study of materials containing cracks, voids, and other inclusions has diverse appli­
cations in several fields. For instance, ceramic components and intermetallics bear various
defects and inclusions either through fabrication or modifying processes. Also, voids and
cracks may develop during the service period ofa structure. The effective moduli ofmaterials
containing microdefects offer important insights into problems involving engineering
structures.

Two approaches to investigate a solid containing various defects and inclusions can
be identified. The micro-scale approach focuses on the individual inclusions, defects, and
local stresses around them. This approach details the evolution of local defects and rigor­
ously accounts for interactions among inclusions and defects (Horii and Nemat-Nasser,
1985; Kachanov, 1985; Hu and Chandra, 1992b). The macro-scale approach attempts to
estimate the effect of microdefects on the overall macroscopic material properties by aver­
aging over defect distributions. The goal ofthe latter approach is to estimate the macroscopic
properties of composite materials in terms of properties and volume concentrations of
individual phases. It includes the following approximate techniques: the self-consistent
method (Budiansky, 1965; Hill, 1965; Budiansky and O'Connell, 1976; Ju, 1991), differ­
ential method (Henyey and Pomphery, 1982; Norris, 1985; Hashin, 1988; Bassani, 1991),
three-phase composite model (Smith, 1974; Christensen and Lo, 1979), and Mori-Tanaka's
theory (Taya and Chou, 1981; Taya and Mura, 1981; Weng, 1984; Benveniste, 1987).

The effective properties of cracked solids have received rekindled attention in recent
years due to their application to damage mechanics [see Kachanov (1992) for an extensive
literature review]. The limited work related to microcracked composites includes an analysis
of a short fiber-reinforced composite containing fiber-end cracks (Taya and Mura, 1981).
Bassani (1991) studied a solid containing voids and/or cracks using the differential method
and assuming a special filling path, i.e. a particular correlation between void volume fraction
and crack density. As discussed by Norris (1985), effective modulus dependence on a filling
path imposes serious questions because one filling path can yield effective properties that
are significantly different from another.

The work by Budiansky and O'Connell (1976) for a solid with randomly distributed
cracks is important to the present study in several aspects. First, they implemented the self­
consistent scheme to approximately take into consideration the interactions among cracks
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of large concentration. This is an extension of the self-consistent mechanics for composite
materials developed independently by Budiansky (1965) and Hill (1965) and discussed later
in this paper. Second, Budiansky and O'Connell emphasize that the effective elastic moduli
of a microcracked solid vary with a crack density parameter e rather than with crack
porosity. Practically speaking, this means that the volume concentration of pore space may
not be a useful measure of the effects of cracks on moduli. A critical value of the crack
density, e = 9/16, is identified at which the elastic moduli of the cracked composite vanish.
Final1y, and most importantly in terms of the energy balance consideration, crack-induced
potential energy change entered their formulation with explicit physical interpretation, but
was not at all explicit in the earlier self-consistent mechanics methods (Budiansky, 1965;
Hil1, 1965). Budiansky and O'Connel1's (1976) crack energy release approach is particularly
useful for the estimation of overal1 macroscopic properties of a microcracked solid. Their
analysis has been generalized to various crack distributions that lead to anisotropic stress
strain behavior [transversely isotropic (Hoenig, 1979; Hu and Huang, 1991) and general
anisotropic (Huang et al., 1992)].

Previous studies on inclusions and cracks using self-consistent mechanics have been
quite separate. Studies on inclusions in matrix material are based on Budiansky's (1965)
and Hill's (1965) work, while Budiansky and O'Connell's work (1976) forms the basis for
research on microcracked solids. The approaches to these two categories of problems look
very different. Motivated by the aforementioned observations, this paper presents a study
of the effective moduli for a solid containing inclusions and cracks within the framework
of self-consistent mechanics. The matrix material and inclusions are assumed isotropic,
with different elastic moduli and Poisson's ratios. The macroscopic behavior of a composite
can be isotropic or anisotropic, depending on the microcrack distributions.

In Section 2, the crack energy release approach presented by Budiansky and O'Connell
(1976) is found to be equivalent to a limiting case of the self-consistent mechanics developed
by Budiansky (1965) and Hill (1965) in the sense that a crack is considered as the limit of
a void if one of its dimensions approaches zero. This equivalence ensures that for a crack­
inclusion-matrix three-phase composite, one can take advantage of both approaches to set
up the governing equations and to evaluate the effective elastic moduli of a solid with
inclusions and microcracks embedded, i.e. microcracked composite material. Section 3
addresses the effective moduli of a composite containing randomly distributed penny­
shaped cracks and spherical inclusions. The microcracked composite is isotropic. Section
4 presents the effective moduli of a solid containing spherical inclusions and parallel
distributions of penny-shaped cracks. The microcracked composite is not isotropic, but is
transversely isotropic.

2. SELF-CONSISTENT MECHANICS FOR COMPOSITE MATERIALS AND CRACKED SOLIDS

Budiansky (1965) and Hill (1965) independently developed a self-consistent mechanics
method to estimate the effective moduli of composite materials. Their theory forms the
basis for the present work. A summary applying their theory for general anisotropic
composite materials is presented in this section.

Consider a large cube of multiphase composite material composed of a coherent
mixture of several isotropic elastic materials. The spatial distributions of the phases are
assumed to be such that, generally, the composite material is homogeneous. Let V denote
the total volume of the composite material, N the total number of phases, and c/

(I = 1,2, ... , N, :r.7= I CI = 1) the volume concentration of the lth phase. Thus, VI = CI V is
the volume of the lth phase. The shear modulus, GI , and bulk modulus, K I , of the lth phase
are related to the Young's modulus, El> and Poisson's ratio, VI, by GI = Ed[2(1 +VI)] and
K I = E I /[3(1 - 2vI)]. In general, the composite material is anisotropic, due to the geometrical
shapes and spatial orientations of inclusions, and is characterized by the fol1owing general
stress-strain relation:

(I)
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where Cijkl is the elastic moduli tensor of the composite material. To determine C/1'kl, or its
inverse C/Jkl (tensor of elastic constants), apply a uniform remote stress (Ji1' = (J8 to the
surface of the cube of composite material. The corresponding remote strain is 88 = Cijk}(J21'
The strain energy of the composite material is given exactly by (Hill, 1963)

(2)

Also, in terms of the individual stress (Jij, strain 8i1" modulus E" and Poisson's ratio VI of
the various phases (Budiansky, 1965),

(3)

where 6i1' = 1/V,Jv,8ij d Vis the average value of 8ij in the Ith phase. Comparison ofeqns (2)
and (3) leads to

Now, the self-consistent approximation (Budiansky, 1965; Hill, 1965) is used such that 8ij
is approximated by the strain that would occur in an isolated inclusion of the Ith material
embedded in an infinite elastic matrix subjected to remote stress (Ji1' = (J8 at infinity and
having the as-yet-unknown elastic constants Cijk} of the composite materials. An exact
solution of 6ij is given by Eshelby (1957) for an ellipsoidal inclusion embedded in an
anisotropic matrix subject to uniform stress at infinity. Solutions for specific inclusion
geometries and elastic properties of inclusions and matrices can be found in Mura (1982).
Equation (4) is the basic equation to determine the elastic constants, Cijkl, of the composite
material, and it leads to a group of independent equations for Cijk} with different loadings,
(J/, applied. It should be pointed out that the elastic constants, CiPe}, of the composite
depend on the elastic moduli E" Poisson's ratio VI, and volume concentration CI of the
individual phase (I = 1, 2, ... ,N) and possibly on the shape and orientation of inclusions,
but not on the remote stresses (J8, although (J8 show up in eqn (4). lfthe composite material
is isotropic, eqn (4) gives two independent equations for C/Pe}, which are identical to those
given by Budiansky (1965). Equation (4) leads to 5 and 21 equations for C/Jk} for a
transversely isotropic solid and for a general anisotropic solid, respectively.

Budiansky and O'Connell (1976) present a self-consistent estimate of the effective
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elastic moduli of a microcracked solid by a different approach. They do not start with eqn
(4), but utilize the potential energy balance and the relationship between potential energy
change and the crack energy release rate. Their approach is particularly useful for solids
with microcracks embedded since they avoid the difficulty of evaluating inclusion strain €ij
for microcracks in eqn (4). Penny-shaped cracks were assumed to be randomly distributed
in the matrix material such that the crack material behaves like an isotropic solid, The
moduli of the cracked solid were found, depending not on the porosity volume concen­
tration, but on a newly introduced parameter, the crack density,

/; = N<a'), (5)

where N is the number of cracks per unit volume, a is the radius of the penny-shaped crack,
and <. >is the average of the argument. A critical value of crack density,/;= 9/16, was
established at which the effective elastic moduli of the cracked solid vanish.

Although Budiansky and O'Connell's (1976) analysis of a cracked solid was based on
the potential energy balance, it is shown in the following that their results still fall into the
general framework of self-consistent mechanics of composite materials (Budiansky, 1965;
Hill, 1965). A penny-shaped crack can be considered as the limit of an oblate spheroidal
cavity with a, = a2 = a and a3-> 0, where alo a2 and a3 are the half-axes of the spheroid.
The basic equation [eqn (4)], for a solid with spheroidal cavities embedded, becomes

(6)

where E and EN are the Young's modulus and vand vN are Poisson's ratio of the cracked
solid and matrix material, respectively; c is the volume concentration of the cavity. Note
that

- Ii I L 42ce, = -- e.. dV = -- e," -3na a3
I} V ,'J V .. II '

VCavlIy all caVIties

(7)

where Vcavity is the total volume of the cavities, V is the total volume of the solid, 4/3(na2a3)
is the volume of each cavity, and eij, which is uniform within each cavity, was given by
Eshelby (1957). In the case of remote hydrostatic tension, 0"8 = O"0(jij' the strain, eij' within
the cavity has the asymptotic form (Eshelby, 1957; Mura, 1982)

4 1- v2 a
e33 =---~-"-O"o+O(l), others = 0(1).

n E a3

Thus, eqn (7), in the limit of cracks (a3/a -> 0), gives

Substituting into the basic equation [eqn (4»), one finds

(8)

(9)

(10)

which is exactly one of the governing equations for determination of effective moduli given
by Budiansky and O'Connell (1976). If other kinds of the remote loading 0"8 are applied,
one can similarly derive other governing equations ofeffective moduli identical to Budiansky
and O'Connell's. This shows that their analysis of a cracked solid is consistent with the
self-consistent mechanics of composite materials (Budiansky, 1965; Hill, 1965). One can
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therefore use the basic equation [eqn (4)J, to calculate the strain energy for regular inclusions
while evaluating the strain energy change due to cracks following the approach proposed
by Budiansky and O'Connell. This combined approach is adopted in the following sections.

3. EFFECTIVE MODULI OF A COMPOSITE MATERIAL WITH INCLUSIONS AND

RANDOMLY DISTRIBUTED CRACKS

The elastic moduli of a solid with spherical inclusions and penny-shaped microcracks
embedded are estimated in this section. The interactions among matrix material, inclusions,
and cracks are accounted for implicitly by the self-consistent method. The microcracks and
inclusions are randomly distributed in size, orientation and location, as shown in Fig. I.
Thus, the composite material behaves like an isotropic solid, with Young's modulus, E,
and Poisson's ratio, ii, to be determined. There are three phases in this composite: Matrix
material with Young's modulus E,Poisson's ratio v, and volume concentration I-c;
spherical inclusions with Young's modulus E[, Poisson's ratio VI, and volume concentration
c; and penny-shaped cracks with the crack density e = N(a 3

), as defined in eqn (5).
For remote hydrostatic tension a8 = aOo jj , the strain 8tj in the inclusion is eij =

I/3aoou/ {K + (I + ii)/[3(1 - ii)](KI - K)} (Eshelby, 1957), where K = E/(3 - 6ii) and
KI = EI / (3 - 6vI) are the bulk moduli of the composite and inclusions, respectively. The
term associated with cracks in eqn (4) can be calculated by Budiansky and O'Connell's
(1976) crack energy release approach, as discussed in Section 2, which gives
16(I-ii2)8ao

2/3E, where 8 is the crack density. Equation (4) gives

K (KI ) K 16 I - 172

+c 1-- + ---8= I
K K - I + ii _ 9 I - 2ii

K+ 3(1-17) (KI-K)

(II)

where K = E/(3 - 6v) is the bulk modulus of the matrix material. In the limit 8 = 0, i.e. no
cracks, eqn (11) is consistent with Budiansky's (1965) and Hill's (1965) work on the estimate
of moduli of multi-phase composite materials. In the other limit, c = 0, i.e. no inclusions,
eqn (II) is identical to Budiansky and O'Connell's (1976) results for a cracked solid.

For the remote pure shear (a~3 #= 0, others = 0), the basic equation [eqn (4)J, after the
proper averaging over crack orientations, gives

Fig. I. Schematic diagram for randomly distributed cracks and inclusions.
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where G = EI[2(1 + v)], G = EI[2(1 + v)], and Gt = EtI[2(1 +Vt)] are the shear moduli of the
composite, matrix and inclusions, respectively. Equations (11) and (12) are the governing
equations to determine the Young's modulus of microcracked composites, E, and Poisson's
ratio, v. The application of remote loading, (Jl~' other than hydrostatic tension or pure shear,
leads to equations that are not independent of eqns (II) and (12).

For the limiting case of spherical voids (E[ = G[ = K[ = 0) with randomly distributed
cracks, eqns (II) and (12) are reduced to

and

G 15(I-v) 32 (1 -v)(5-v)
.~ +---~---c+- ~.. ,,= I
G 7-5v 45 2-v .

(13a)

(l3b)

At the other extreme, rigid inclusions (E[ = G[ = K[ = 00) and cracks, eqns (1 I) and (12)
become

and

C!.[I_.!2i~':::-V)cJ+ 32 (I-v)(5-v),, = I
G 8 - 10v 45 2 - v .

(l4a)

(14b)

It can be established from eqns (II) and (12) that the elastic moduli E, Gand Kof the
composite vanish as the crack density" reaches 9/16, independent of the inclusion volume
concentration c. This condition, " = 9/16 for vanishing moduli, is identical to that estab­
lished by Budiansky and O'Connell (1976) for a cracked matrix material without inclusions.
The moduli ofcomposite materials depend strongly on the number of inclusions and cracks,
but the moment at which moduli of the composite materials vanish depends only on the
attainment of a critical value of the crack density,

( 15)

The criterion [eqn (15)] also holds for a composite material with rigid inclusions and
cracks, plus a constraint on the volume concentration of inclusions, c < 1/3, as determined
by eqn (14). However, the criterion for vanishing moduli of a composite material with voids
and cracks is different because the void volume concentration c plays a role. The following
approximate criterion for vanishing moduli of a composite material with voids and cracks,
within 0.4% error, is obtained from eqn (13) :

¥e+2c = 1. (16)

Equation (16) is reduced to c = 1/2 if there is no crack (" = 0), which is consistent with
Budiansky (1965).

The numerical solution of eqns (11) and (12) shows that the Poisson's ratio, v, of the
composite material depends very weakly on the inclusion volume concentration, c, and the
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Fig. 2. Variation of EIE with crack density 8: Randomly distributed cracks and inclusions
EI/E= 113.

ratio of the inclusion and matrix Young's modulus, EllE. Thus, vdepends approximately
only on the matrix Poisson's ratio, v, and the crack density, e, and is well approximated by

v= v(1- .lfe). (17)

The normalized Young's modulus, EIE, versus crack density, e, is presented for various
inclusion volume concentrations, C, in Figs 2 and 3, for compliant inclusions, EIIE = 113,
and stiff inclusions, EIIE = 3, respectively. The Poisson's ratios of the matrix and inclusions
are taken as 0.25 and 0.33, respectively. For stiff inclusions (EIIE> 1), which is the case
for most metal matrix composites and some ceramic matrix composites, the Young's
modulus of the composite, E, versus the crack density, e, is approximately linear, as shown
in Fig. 3. This gives

E ~ E(e = 0) . (1- .lfe),

1.4""["'"-------------------------,

(18)
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Fig. 3. Variation ofE/Ewith crack density 8: Randomly distributed cracks and inclusions EIIE = 3.
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where E(8 = 0) is the Young's modulus of the uncracked composites. The effect of micro­
cracks and stiff inclusions is approximately decoupled. One can include the effect of
microcracking by multiplying the factor (1-16/98) by the uncracked composite's modulus,
E(8 = 0), which was given by Budiansky (1965) and Hill (1965).

For compliant inclusions (EIIE < 1), as the inclusion volume concentration, c,
increases, the Young's modulus, E, versus 8 deviates more and more from a linear relation
(Fig. 2). Thus, eqn (18) does not hold for compliant inclusions, including the limiting case
of microvoids, and one must start from eqns (11) and (12) in order to evaluate the Young's
modulus of the composite.

4. EFFECTIVE MODULI OF A COMPOSITE MATERIAL WITH INCLUSIONS AND

NONRANDOMLY DISTRIBUTED CRACKS

Nonrandomly distributed cracks are frequently discovered in engineered materials.
For example, a layer of cracks is introduced in ceramics to reduce the modulus of the hard
material in order to make the grinding of the hard material easier (Hu and Chandra, I 992a).
Hu and Huang (1991) and Huang et al. (1992) studied the effect of distributed, long, tunnel
cracks on the macroscopic elastic properties of materials. The elastic moduli of a composite
material with parallel penny-shaped cracks are studied in this section. The spherical
inclusions are embedded in the matrix. As in the previous section, there are three phases in
this composite: matrix material, inclusions, and parallel penny-shaped cracks with the crack
density 8 = N<a 3

), as defined in eqn (5). These penny-shaped cracks are assumed normal
to the x3-axis (parallel to the XI-X2 plane, Fig. 1).

The cracked composite is not isotropic due to parallel cracks. The tensile modulus in
the direction normal to the crack plane is reduced more than in the other direction. The
cracked composite has the following transversely isotropic stress-strain relation, with the
principal axis x 3normal to the crack planes:

81 = SIIO'I +SI20'2+ S I30'3,

82 = SI2O'I +S110'2 +SI30'3,

83 = SI3(O't +0'2)+S330'3,

Y23 = S440'23, }

Y31 = S440'3h

YI2 = 2(S'1 -SI2)0'12,

(19)

where Y23, Y3], and Y12 are the engineering shear strains and Su are the elastic compliances.
There are five independent elastic constants, su, to be determined, and they are related to
the engineering tensile, shear moduli, and Poisson's ratio by

I
S44 = --=- ,

G 23

1
S =

33 E'
3

(20)

Two categories offundamental solutions are needed for implementing eqn (4) to determine
sij' The first is for a penny-shaped crack embedded in the principal plane of a transversely
isotropic solid subject to remote tension, 0'~3' or shear, O'~ I and 0'~2 (Fabrikant, 1989). The
primary result for the present analysis is the energy release If; of a penny-shaped crack with
a radius a,

(21 )
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where HI and Hs are functions of the elastic constants sij as given in Appendix A. The
second is a spherical inclusion embedded in a transversely isotropic matrix subject to general
remote stressing (Eshelby, 1957; Mura, 1982). The primary result for the present analysis
is the uniform strain Eij in the inclusion.

El = Llle?+Llzeg+Ll3eg,

Ez = L Z1 e?+L22eg+L23 eg,

E3 = L31e?+L32eg+L33eg,

(22)

where Lij are functions of the elastic constants Sij of composite material and the moduli of
inclusions, as given in Appendix B; e?, eg and eg are the remote tensile strains; and yg3' yg 1

and y?z are the remote engineering shear strains. These remote strains are related to remote
stress u8 by eqn (19).

The following five sets of remote stressing are applied to eqn (4) to determine the five
independent elastic constants, Sij: (1) remote hydrostatic tension, u8 = uObij; (2) remote
uniaxial tension, Ug3 = uO, others = 0; (3) remote axisymmetric tension, u? 1= ugz = uO,
others = 0; (4) remote in-plane shear, u?z = ug. = TO, others = 0; and (5) remote out-of­
plane shear, Ug3 = ugz = TO, others = O. These loading sets lead to the following governing
equation of sij:

(23a)

(23b)

(23c)

(23d)

(23e)

where elP are the strains in the inclusion embedded in the composite material subject to the
kth set of remote stressing. They are related to the elastic constants, sij, of composite
material by

,,(3) 3

"kk "-0 = L... [(Lil +LiZ)(Sll +sl2)+2Li3s 13].
u i= I

(24a)

(24b)

(24c)

(24d)

(24e)

In the limiting case, e = 0 (no cracks), the composite material becomes isotropic.
Equations (23) and (24) degrade to the governing equation by Budiansky (1965) for a
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matrix with spherical inclusions embedded, i.e. eqns (11) and (12) with e = O. The other
limiting case, C = 0 (no inclusions), i.e. parallel penny-shaped cracks in a matrix material,
has been studied by Hoenig (1979). He presented the tensile modulus, £3, normal to crack
planes and shear modulus, G23, versus the crack density, e.

The engineering moduli, £1> £3, GI2 and G23 of microcracked composites are nor­
malized by the corresponding moduli of the matrix material. Some interesting conclusions
are summarized below:

(1) The dependence of all the engineering moduli £1' £3, G12 and G23 on the Poisson's
ratios of the matrix and inclusions vand VI is rather weak for the practical range ofPoisson's
ratios for engineering materials, 0.2 ::::; V, VI::::; 0.4. The difference is usually less than 3%.
The Poisson's ratios of the matrix and inclusions are fixed as V = 0.25 and VI = 0.33,
respectively, in the following.

(2) The in-plane tensile modulus, £ I, and shear modulus, G12, which are in the
directions parallel to the crack planes, are extremely insensitive to the crack density, G.

For the inclusion volume concentration, c, ranging from 0 to 0.3 and various ratios of
matrix/inclusions moduli, EI/E, the differences of in-plane moduli are always less than 3%.
Thus,

(25)

This means that parallel cracks have little or no effect on the moduli parallel to crack planes
and the in-plane tensile and shear moduli, £ 1 and G12, are very well approximated by
Budiansky's (1965) and Hill's (1965) self-consistent estimate for an isotropic composite
material, i.e. eqns (11) and (12) with e = O.

(3) The normalized out-of-plane tensile modulus, £3/E, and shear modulus, G23/G, are
presented versus the crack density, e, for inclusion volume concentration C = 0,0.1,0.2 and
0.3 in Figs 4 and 5. The case for C = 0 gives Hoenig's (1979) results. The inclusion modulus
ratio, EI/E, is fixed at 1/3 (compliant inclusions). It is observed from the numerical results
that the dependence of out-of-plane moduli on inclusion volume concentration, c, and crack
density, e, is approximately decoupled, i.e.

£3 £3(c,e=0,EtlE) £3(c=0,e)
E- ~ -----T---· ---E--'

G23 G23 (C, e = 0, EtlE) G23 (C = 0, e)
_.~ --- ~.__.. .-----
G = G G

(26a)

(26b)
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Fig. 4. Variation of £3/E versus crack density B: Parallel cracks and inclusions E,/E == 1/3.
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where the first terms on the right-hand side as the normalized moduli of the uncracked
composite, i.e. the self-consistent estimate by Budiansky (1965) and Hill (1965) and eqns
(11) and (12) with 8 = 0; and the second terms on the right-hand side are the normalized
moduli of a matrix material with parallel cracks (no inclusions), as shown in Figs 4 and 5
for c = 0, i.e. the result obtained by Hoenig (1979). The error to this approximation by eqn
(26) is less than 8% for c ~ 0.3. One can estimate the moduli of a cracked composite
material by the moduli of the uncracked composite and the modulus reduction curves by
Hoenig, i.e. the curves c = °in Figs 4 and 5.

(4) The engineering Poisson's ratio, V3h depends rather weakly on the inclusion volume
concentration, c. A good approximation to V31 is V31 (c = 0,8, v) for a microcracked matrix
material without inclusions,

_ '" ~ _ _ E3 (c = 0,8, v)
V31=V31(C-O,8,V)-V E ' (27)

where E3(c = 0,8, v) is the tensile modulus of the cracked matrix, i.e. the curve c = °in
Fig. 4. Its dependence on v is rather weak.

Based on the discussions above, one finds that the moduli of a composite with parallel
cracks are completely determined by the moduli of the uncracked composite and Hoenig's
(1979) modulus reduction curve.
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APPENDIX A

The fundamental solution for a penny-shaped crack embedded in the prineipal plane of a transversely
isotropic solid subject to remote tension or shear stress can be found in the book by Fabrikant (1989). The
following coefficients, H, and H" in the expression of energy release 1/J [eqn (21)] are given as

where si} are the elastic constants of the transversely isotropic solid, 1'1 and 1'2 are the roots of the following fourth­
order polynomial of l' with the positive imaginary part (1m l' I > 0, 1m }', > 0) :

APPENDIX B

The strains til in a spherical inclusion embedded in a general anisotropic matrix subject to remote stressing
0'8 (or remote strains e8) are uniform (Eshelby, (957). If the matrix is transversely isotropic, an explicit expression
between inclusion strains til and remote strains eg [eqn (22)] can be found (Mura, 1982). The coefficients L ii

relating tit to e8 in eqn (22) are given by

[ (

.I'll "12 S,,)(I-VI V,
X (I+VI)~~-2VI) SJ2. .1'" SI3 VI Vr

Sll SjJ 8n VI Vr

L 44 = {I +2S 13 !3lS44GI-1)} I, L 66 = {I +2S 12I2[2(SII -SI2)GI-Ij} I,

where I is the identity matrix; Eh VI and GI are the Young's modulus, Poisson's ratio, and shear modulus of
inclusions, respectively; si} are the elastic constants of the matrix; and Si;kl are the so-called Eshelby tensors, which
can be found in Mura (1982) for a transversely isotropie solid.


